Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Microbiol ; 60(7): e0009222, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1874496

RESUMEN

Clinical Microbiology Open (CMO), a meeting supported by the American Society for Microbiology's Clinical and Public Health Microbiology Committee (CPHMC) and Corporate Council, provides a unique interactive platform for leaders from diagnostic microbiology laboratories, industry, and federal agencies to discuss the current and future state of the clinical microbiology laboratory. The purpose is to leverage the group's diverse views and expertise to address critical challenges, and discuss potential collaborative opportunities for diagnostic microbiology, through the utilization of varied resources. The first and second CMO meetings were held in 2018 and 2019, respectively. Discussions were focused on the diagnostic potential of innovative technologies and laboratory diagnostic stewardship, including expansion of next-generation sequencing into clinical diagnostics, improvement and advancement of molecular diagnostics, emerging diagnostics, including rapid antimicrobial susceptibility and point of care testing (POCT), harnessing big data through artificial intelligence, and staffing in the clinical microbiology laboratory. Shortly after CMO 2019, the coronavirus disease 2019 (COVID-19) pandemic further highlighted the need for the diagnostic microbiology community to work together to utilize and expand on resources to respond to the pandemic. The issues, challenges, and potential collaborative efforts discussed during the past two CMO meetings proved critical in addressing the COVID-19 response by diagnostic laboratories, industry partners, and federal organizations. Planning for a third CMO (CMO 2022) is underway and will transition from a discussion-based meeting to an action-based meeting. The primary focus will be to reflect on the lessons learned from the COVID-19 pandemic and better prepare for future pandemics.


Asunto(s)
COVID-19 , Pandemias , Inteligencia Artificial , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Salud Pública , Estados Unidos
2.
J Clin Microbiol ; 59(12): e0101921, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1443351

RESUMEN

Nucleic acid amplification testing (NAAT) for SARS-CoV-2 is the standard approach for confirming COVID-19 cases. This study compared results between two emergency use authorization (EUA) NAATs, with two additional EUA NAATs utilized for discrepant testing. The limits of detection (LOD) for the BD SARS-CoV-2 reagents for the BD MAX system (MAX SARS-CoV-2 assay), the bioMérieux BioFire respiratory panel 2.1 (BioFire SARS-CoV-2 assay), the Roche cobas SARS-CoV-2 assay (cobas SARS-CoV-2 assay), and the Hologic Aptima SARS-CoV-2 assay Panther (Aptima SARS-CoV-2 assay) NAAT systems were determined using a total of 84 contrived nasopharyngeal specimens with 7 target levels for each comparator. The positive and negative percent agreement (PPA and NPA, respectively) of the MAX SARS-CoV-2 assay, compared to the Aptima SARS-CoV-2 assay, was evaluated in a postmarket clinical study utilizing 708 nasopharyngeal specimens collected from suspected COVID-19 cases. Discordant testing was achieved using the cobas and BioFire SARS-CoV-2 NAATs. In this study, the measured LOD for the MAX SARS-CoV-2 assay (251 copies/ml; 95% confidence interval [CI], 186 to 427) was comparable to the cobas SARS-CoV-2 assay (298 copies/ml; 95% CI, 225 to 509) and the BioFire SARS-CoV-2 assay (302 copies/ml; 95% CI, 219 to 565); the Aptima SARS-CoV-2 assay had an LOD of 612 copies/ml (95% CI, 474 to 918). The MAX SARS-CoV-2 assay had a PPA of 100% (95% CI, 97.3% to 100.0%) and an NPA of 96.7% (95% CI, 94.9% to 97.9%) compared to the Aptima SARS-CoV-2 assay. The clinical performance of the MAX SARS-CoV-2 assay agreed with another sensitive EUA assay.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Indicadores y Reactivos , Técnicas de Diagnóstico Molecular , Nasofaringe , Sensibilidad y Especificidad
3.
Acad Pathol ; 8: 23742895211010253, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1231236

RESUMEN

In-system clinical laboratories have proven themselves to be a fundamentally important resource to their institutions during the COVID-19 pandemic of the past year. The ability to provide SARS-CoV-2 molecular testing to our hospital system allowed us to offer the best possible care to our patients, and to support neighboring hospitals and nursing homes. In-house testing led to significant revenue enhancement to the laboratory and institution, and attracted new patients to the system. Timely testing of inpatients allowed the majority who did not have COVID-19 infection to be removed from respiratory and contact isolation, conserving valuable personal protective equipment and staff resources at a time that both were in short supply. As 2020 evolved and our institution restarted delivery of routine care, the availability of in-system laboratory testing to deliver both accurate and timely results was absolutely critical. In this article, we attempt to demonstrate the value and impact of an in-system laboratory during the COVID-19 pandemic. A strong in-house laboratory service was absolutely critical to institutional operational and financial success during 2020, and will ensure resiliency in the future as well.

4.
Acad Pathol ; 8: 23742895211010257, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1215087

RESUMEN

In March 2020, NorthShore University Health System laboratories mobilized to develop and validate polymerase chain reaction based testing for detection of SARS-CoV-2. Using laboratory data, NorthShore University Health System created the Data Coronavirus Analytics Research Team to track activities affected by SARS-CoV-2 across the organization. Operational leaders used data insights and predictions from Data Coronavirus Analytics Research Team to redeploy critical care resources across the hospital system, and real-time data were used daily to make adjustments to staffing and supply decisions. Geographical data were used to triage patients to other hospitals in our system when COVID-19 detected pavilions were at capacity. Additionally, one of the consequences of COVID-19 was the inability for patients to receive elective care leading to extended periods of pain and uncertainty about a disease or treatment. After shutting down elective surgeries beginning in March of 2020, NorthShore University Health System set a recovery goal to achieve 80% of our historical volumes by October 1, 2020. Using the Data Coronavirus Analytics Research Team, our operational and clinical teams were able to achieve 89% of our historical volumes a month ahead of schedule, allowing rapid recovery of surgical volume and financial stability. The Data Coronavirus Analytics Research Team also was used to demonstrate that the accelerated recovery period had no negative impact with regard to iatrogenic COVID-19 infection and did not result in increased deep vein thrombosis, pulmonary embolisms, or cerebrovascular accident. These achievements demonstrate how a coordinated and transparent data-driven effort that was built upon a robust laboratory testing capability was essential to the operational response and recovery from the COVID-19 crisis.

6.
Clin Lab Med ; 40(4): 393-420, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-809444

RESUMEN

Syndromic panels have allowed clinical microbiology laboratories to rapidly identify bacteria, viruses, fungi, and parasites and are now fully integrated into the standard testing practices of many clinical laboratories. To maximize the benefit of syndromic testing, laboratories must implement strict measures to ensure that syndromic panels are being used responsibly. This article discusses commercially available syndromic panels, the benefits and limitations of testing, and how diagnostic and laboratory stewardship can be used to optimize testing and improve patient care while keeping costs at a minimum.


Asunto(s)
Infecciones/diagnóstico , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular , Humanos
7.
J Mol Diagn ; 22(8): 968-974, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-683077

RESUMEN

Clinical molecular laboratory professionals are at the frontline of the response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, providing accurate, high-quality laboratory results to aid in diagnosis, treatment, and epidemiology. In this role, we have encountered numerous regulatory, reimbursement, supply-chain, logistical, and systems challenges that we have struggled to overcome to fulfill our calling to provide patient care. In this Perspective from the Association for Molecular Pathology Infectious Disease Subdivision Leadership team, we review how our members have risen to these challenges, provide recommendations for managing the current pandemic, and outline the steps we can take as a community to better prepare for future pandemics.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Pandemias , Patología Molecular , Neumonía Viral/epidemiología , COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Liderazgo , Técnicas de Diagnóstico Molecular , Patología Molecular/organización & administración , Neumonía Viral/diagnóstico , SARS-CoV-2 , Sociedades Médicas , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA